Package: xtune 2.0.0

Jingxuan He

xtune: Regularized Regression with Feature-Specific Penalties Integrating External Information

Extends standard penalized regression (Lasso, Ridge, and Elastic-net) to allow feature-specific shrinkage based on external information with the goal of achieving a better prediction accuracy and variable selection. Examples of external information include the grouping of predictors, prior knowledge of biological importance, external p-values, function annotations, etc. The choice of multiple tuning parameters is done using an Empirical Bayes approach. A majorization-minimization algorithm is employed for implementation.

Authors:Jingxuan He [aut, cre], Chubing Zeng [aut]

xtune_2.0.0.tar.gz
xtune_2.0.0.zip(r-4.5)xtune_2.0.0.zip(r-4.4)xtune_2.0.0.zip(r-4.3)
xtune_2.0.0.tgz(r-4.5-any)xtune_2.0.0.tgz(r-4.4-any)xtune_2.0.0.tgz(r-4.3-any)
xtune_2.0.0.tar.gz(r-4.5-noble)xtune_2.0.0.tar.gz(r-4.4-noble)
xtune_2.0.0.tgz(r-4.4-emscripten)xtune_2.0.0.tgz(r-4.3-emscripten)
xtune.pdf |xtune.html
xtune/json (API)
NEWS

# Install 'xtune' in R:
install.packages('xtune', repos = c('https://jingxuanh.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/jingxuanh/xtune/issues

Datasets:
  • diet - Simulated diet data to predict weight loss
  • example - An simulated example dataset
  • example.multiclass - Simulated data with multi-categorical outcome
  • gene - Simulated gene data to predict weight loss

On CRAN:

Conda:

3.90 score 16 scripts 130 downloads 1 mentions 7 exports 19 dependencies

Last updated 2 years agofrom:33d88886b6. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 10 2025
R-4.5-winNOTEMar 10 2025
R-4.5-macNOTEMar 10 2025
R-4.5-linuxNOTEMar 10 2025
R-4.4-winNOTEMar 10 2025
R-4.4-macNOTEMar 10 2025
R-4.4-linuxNOTEMar 10 2025
R-4.3-winNOTEMar 10 2025
R-4.3-macNOTEMar 10 2025

Exports:coef_xtuneestimateVariancemisclassificationmsepredict_xtunextunextune.control

Dependencies:adaptMCMCcodacodetoolscrayonforeachglmnetintervalsiteratorslatticelbfgsMASSMatrixramcmcRcppRcppArmadilloRcppEigenselectiveInferenceshapesurvival

Getting started with xtune

Rendered fromTutorials_for_xtune.Rmdusingknitr::rmarkdownon Mar 10 2025.

Last update: 2023-06-17
Started: 2023-06-15